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The exclusion process
The state space is {0, 1}Zd . An element of the state space is called a
configuration, denoted by η. For x ∈ Zd, ηx ∈ {0, 1} is the number of
particles at site x.
Generator of the process η(t): for local functions f on {0, 1}Zd ,

Lf(η) =
∑

x,y∈Zd

p(y − x)ηx(1 − ηy)[f(ηx,y − f(η))],

where ηx,y
z = ηx for z = y, = ηy for z = x, and = ηz otherwise.
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Figure: SSEP: p = q = 1/2. ASEP: p = 1 − q ∈ (1/2, 1].
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For ρ ∈ [0, 1], let νρ be the product measure on {0, 1}Zd with marginals

νρ(ηx = 1) = ρ, x ∈ Zd.

It is well known that νρ is invariant for the exclusion process, see
(Liggett’85 and ’99).
Check directly that ∫

Lfdνρ = 0.
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The tagged particle

Let the initial measure of the process be

ν∗ρ(·) = νρ(·|η0 = 1).

Denote by X(t) the position of the tagged particle at time t. The process
X(t) is not Markovian!

-5 -4 -3 -2 -1 0 1 2 3 4

Define the environmental process seen from the tagged particle as

ζx(t) = ηXt+x(t), x ∈ Zd.

Since the process η(t) is translation invariant, the process ζ(t) is Markovian.
Moreover, ν∗ρ is invariant for the process ζ(t).
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Related work

Assume p(·) has finite range and the process η(t) starts from the initial
measure ν∗ρ .
Law of large numbers

lim
t→∞

X(t)
t = (1 − ρ)

∑
x∈Zd

xp(x) almost surely,

see (Saada’87).
Central limit theorems

For d = 1, p(1) = p(−1) = 1/2,

XtN2

N1/2 ⇒ fBM(1/4), N → +∞.

See (Arratia’83) (De Masi-Ferrari’02) (Peligrad-Sethuraman’08).
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In the other cases, the tagged particle is diffusive, and we expect

XtN2

N ⇒ BM, N → +∞.

See (Kipnis-Varadhan’86) for the symmetric case, (Varadhan’95) mean
zero case, (Kipnis’86) ASEP, (Sethuraman-Varadhan-Yau’00)
asymmetric case in dimension d ≥ 3, (Komorowski-Landim-Olla’12).
For asymmetric case in d ≤ 2 except ASEP, CLT and inriance principles
are open, see (Sethuraman’06).

Large deviations
For SSEP, see (Sethuraman-Varadhan’13); for ASEP, see
(Sethuraman-Varadhan’23).
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What is MDP?

Let X1,X2, . . . be independent random variables, and SN =
∑N

i=1 Xi.
Law of large numbers.

SN/N → µ := E[X1] almost surely.

Central limit theorems.

(SN − Nµ)/N1/2 ⇒ N(0, σ2).

Large deviations.
logP

(
SN/N = x

)
≈ −NI(x).
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Moderate deviations. For N1/2 ≪ aN ≪ N,

logP
(SN − Nµ

aN
= x

)
≈ −a2

N
N

x2

2σ2 .

First intuition:

P
(SN − Nµ

aN
= x

)
≈ P

(
N(0, σ2) =

aNx√
N

)
≈ 1√

2πσ2
exp

{
− a2

N
N

x2

2σ2

}
.

Second intuition:

P
(SN − Nµ

aN
= x

)
= P

(SN
N = µ+

aN
N x

)
≈ exp

{
− NI

(
µ+

aN
N x

)}
.

Since I(µ) = I ′(µ) = 0,

I
(
µ+

aN
N x

)
≈ a2

N
2N2 I ′′(µ)x2
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One-point MDP for the tagged particle
Consider the SSEP, that is, d = 1 and p(1) = p(−1) = 1/2. Recall

X(t)/t1/4 ⇒ N(0, σ2), σ2 =
√

2/π(1 − ρ)/ρ.

Fix
√

N ≪ aN ≪ N and T > 0. Define

I(α) = −α2/(2
√

Tσ2), α ∈ R.

Theorem (Xue-Z.’23)

The sequence {X(TN2)/aN}N≥1 satisfies the MDP with decay rate a2
N/N

and with rate function I(·). Precisely speaking, for any closed set C ⊂ R
and for any open set O ∈ R,

lim sup
N→∞

N
a2

N
logP

(
X(TN2)/aN ∈ C

)
≤ − inf

α∈C
I(α),

lim inf
N→∞

N
a2

N
logP

(
X(TN2)/aN ∈ O

)
≥ − inf

α∈O
I(α).
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Sample path MDP for the tagged particle

The fractional Brownian motion {B1/4(t) : t ≥ 0} is a Gaussian process with
covariance

Cov(B1/4(t),B1/4(s)) =
1
2 (t

1/2 + s1/2 − |t − s|1/2).

It also has the following representation

B1/4(t) =
∫ t

0
K(t, s)dB(s).

Let H be the set of càdlàg functions f : [0,T ] → R such that there exists a
function hf ∈ L2([0,T]) satisfying

f (t) =
∫ t

0
K(t, s)hf(s)ds.
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For any càdlàg functions f : [0,T ] → R, define

Ipath(f ) =
{

1
2
∫ T

0 hf(s)2ds, if f ∈ H;

+∞, otherwise.

Ipath is the large deviation rate function of the sequence of processes
{B1/4(t)/

√
N : t ≥ 0}N≥1.

Assume √
N logN ≪ aN ≪ N.

Theorem (Xue-Z.’23)

The sequence {X(tN2)/aN : 0 ≤ t ≤ T}N≥1 satisfies the MDP with decay
rate a2

N/N and with rate function Ipath(·).
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Intuitive explanation

P
(
{X(tN2)/aN : 0 ≤ t ≤ T} = {x(t) : 0 ≤ t ≤ T}

)
= P

({X(tN2)√
N

: 0 ≤ t ≤ T
}
=

{ aN√
N

x(t) : 0 ≤ t ≤ T
})

≈ P
({√

N
aN

B1/4(t) : 0 ≤ t ≤ T
}
=

{
x(t) : 0 ≤ t ≤ T

})
≈ exp

{
− a2

N
N Ipath({x(t) : 0 ≤ t ≤ T})

}
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Comments on the ASEP
For TASEP (d = 1, p = 1), X(t) is a Poisson process with rate 1 − ρ, see
(Liggett’85).

For ASEP, the following Poissonian approximation holds:

X(t) = N(t)− R(t) + R(0),

where N(t) is a Poisson process with rate (p − q)(1 − ρ), and B(t) is a
stationary process on Z satisfying that there exists θ > 0,

E
[
eθ|R(t)|] < +∞

uniformly in time t.
Thus, for any δ > 0 (recall

√
N ≪ aN ≪ N),

N
a2

N
lim sup

N→∞
logP

(
|R(tN)|/aN > δ

)
= −∞.
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Outline of the proof
The main idea is to relate the position of the tagged particle to the
empirical measure of the process, and then use MDP from hydrodynamic
limits and contraction principle to conclude the proof.

Time 0

-5 -4 -3 -2 -1 0 1 2 3 4

Time t

-5 -4 -3 -2 -1 0 1 2 3 4

Let Jx,x+1(t) be the current across the bound (x, x + 1) up to time t.
Above, X(t) = 2 and J−1,0(t) = 1.
For X(t) > 0,

J−1,0(t) =
X(t)−1∑

x=0
ηx(t), J−1,0(t) =

∞∑
x=0

(ηx(t)− ηx(0)).
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MDP from hydrodynamic limits
For G ∈ S(R), define the empirical measure of the SSEP as

⟨µN
t ,G ⟩ = 1

aN

∑
x∈Z

(ηx(tN2)− ρ)G(x/N),
√

N ≪ aN ≪ N.

For G ∈ C 1,∞
c ([0,T ]× R) and µ ∈ D([0,T ],S ′(R)), define

l (µ,G) = ⟨µT,GT⟩ − ⟨µ0,G0⟩ −
∫ T

0

⟨
µs,

(
∂s + (1/2)∂2

u
)

Gs
⟩

ds.

The rate function Q = Qdyn +Qini, where

Qdyn(µ) = sup
G∈C1,∞

c ([0,T]×R)

{
l(µ,G)− χ(ρ)

2

∫ T

0

∫
R
(∂uG)

2
(s, u)duds

}

Qini (µ0) = sup
ϕ∈C∞

c (R)

{
⟨µ0, ϕ⟩ −

χ(ρ)

2

∫
R
ϕ2(u)du

}
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G∈C1,∞

c ([0,T]×R)

{
l(µ,G)− χ(ρ)

2

∫ T

0

∫
R
(∂uG)

2
(s, u)duds

}

Qini (µ0) = sup
ϕ∈C∞

c (R)

{
⟨µ0, ϕ⟩ −

χ(ρ)

2

∫
R
ϕ2(u)du

}
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Theorem (Gao-Quastel’03)
Suppose η(0) ∼ νρ for ρ ∈ (0, 1). The sequence of processes
{µN

t : 0 ≤ t ≤ T}N≥1 satisfies the MDP with decay rate a2
N/N and with

rate function Q(·).

See (Kipnis-Olla-Varadhan’89) for LDP from hydrodynamic limits.
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MDP for the tagged particle

1
aN

J−1,0(tN2) =
1

aN

∞∑
x=0

{
(ηx(tN2)− ρ)− (ηx(0)− ρ)

}
= ⟨µN

t − µN
0 , χ[0,+∞)⟩.

1
aN

J−1,0
(
tN2) =

1
aN

X(tN2)−1∑
x=0

ηtN2(x)

=
1

aN

X(tN2)−1∑
x=0

(
ηx(tN2)− ρ

)
+

ρ

aN
X
(
tN2) ,

⟨µN
t − µN

0 , χ[0,+∞)⟩ =
1

aN

X(tN2)−1∑
x=0

(
ηx(tN2)− ρ

)
+

ρ

aN
X
(
tN2)
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⟨µN
t − µN

0 , χ[0,+∞)⟩ =
1

aN

X(tN2)−1∑
x=0

(
ηx(tN2)− ρ

)
+

ρ

aN
X
(
tN2)

The first term on the right hand side is negligible in the rate function:
If |X(tN2)| > δaN, by standard large deviation results, it is
exponentially small with rate a2

N/N;
otherwise, the contribution is O(δ), and we let δ → 0.

By contraction principle, the rate function for the tagged particle process
{X(tN2), 0 ≤ t ≤ T} should be

I(x(·)) = inf
{
Q(µ) : ⟨µt − µ0, χ[0,+∞)⟩ = ρx(t), ∀0 ≤ t ≤ T

}
.

Problems
(1) Not easy to apply the contraction principle to the whole sample path.
(2) Not easy to solve the above variational formula.
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Strategies
1 Prove finite-dimensional MDP for {X(tiN2), 1 ≤ i ≤ n},

I(x(ti)
n
i=1) = inf

{
Q(µ) : ⟨µti − µ0, χ[0,+∞)⟩ = ρx(ti), 1 ≤ i ≤ n

}
=

1
2σ2 x · A−1x,

where x = (x(t1), . . . , x(tn))
T and A = (a(ti, tj))1≤i,j≤n,

a(t, s) = 1
2 (t

1/2 + s1/2 − |t − s|1/2).

2 Prove the process {X(tN2), 0 ≤ t ≤ T} is exponentially tight.
3 By standard large deviation results, the process {X(tN2), 0 ≤ t ≤ T}

satisfies MDP with rate

I(x(·)) = sup
{ 1

2σ2 x · A−1x : n ≥ 1, 0 ≤ t1 < t2 < . . . < tn ≤ T,

tj ∈ ∆c
x for all 1 ≤ j ≤ n

}
.
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Thanks!
Email: linjie_zhao@hust.edu.cn
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