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The exclusion process
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Figure: ASEP: p = 1 − q ∈ (1/2, 1].

The configuration space is Ω := {0, 1}Zd . For any η ∈ Ω and x ∈ Zd,
ηx ∈ {0, 1} is the number of particles at site x.
Generator of the process η(t): for local functions f on Ω,

Lf (η) =
∑

x,y∈Zd

p(y − x)ηx(1 − ηy)[f(ηx,y)− f(η)],

where ηx,y
z = ηx for z = y, = ηy for z = x, and = ηz otherwise.
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Hydrodynamic limits
Assume m :=

∑
x∈Zd xp(x) ̸= 0. Define the empirical measure of the process

πN
t (du) = 1

Nd

∑
x∈Zd

ηx(tN)δx/N(du).

Under mild conditions,

lim
N→∞

πN
t (du) = ρ(t, u)du in probability,

where the hydrodynamic equation is

∂tρ(t, u) + m · ∇f (ρ(t, u)) = 0

with initial condition ρini. Above, f (ρ) = ρ(1 − ρ).
Relative entropy method only in the smooth regime [Yau’1991];
Attractiveness method [Rezakhanlou’1991].

η(0) ≤ ζ(0) ⇒ η(t) ≤ ζ(t).
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Navier-Stokes corrections
One expects an order of N−1 correction to the hydrodynamic equation
[Page 185, Kipnis-Landim’1998]:

∂tρ
N + m · ∇f (ρN) =

1
N

d∑
i,j=1

∂ui

[
Di,j(ρ

N)∂ujρ
N].

First order correction. Define

qN(t, u) := E[η[uN](tN)].

Then, under suitable initial conditions,

lim
N→∞

N [qN − ρN] = 0

in a weak sense.
Asymmetric EP in d ≥ 3 [Landim-Olla-Yau’1997, CPAM],
EP with speed change in d ≥ 3 [Janvresse’1998, AoP].

Linjie Zhao (HUST) One conservation law 5 / 27



Navier-Stokes corrections
One expects an order of N−1 correction to the hydrodynamic equation
[Page 185, Kipnis-Landim’1998]:

∂tρ
N + m · ∇f (ρN) =

1
N

d∑
i,j=1

∂ui

[
Di,j(ρ

N)∂ujρ
N].

First order correction. Define

qN(t, u) := E[η[uN](tN)].

Then, under suitable initial conditions,

lim
N→∞

N [qN − ρN] = 0

in a weak sense.
Asymmetric EP in d ≥ 3 [Landim-Olla-Yau’1997, CPAM],
EP with speed change in d ≥ 3 [Janvresse’1998, AoP].

Linjie Zhao (HUST) One conservation law 5 / 27



Long time behavior. If

∂tρ(t, u) + m · ∇f (ρ(t, u)) = 0,

then the entropy solution converges to a stationary solution which is
constant along the drift:

lim
t→∞

ρ(t, u) =
∫

ρini(u + mr)dr.

Thus, under diffusive scaling, one expects that

m · ∇ lim
N→∞

E[η[uN](tN2)] = 0,

and that on the hyperplane orthogonal to the drift, the profile obeys a
parabolic equation.
Asymmetric ZRP in d ≥ 2 [Benois-Koukkous-Landim’1997, JSP],
Asymmetric EP in d ≥ 3 [Landim-Sued-Valle’2004, CMP].
The incompressible limit...
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Equilibrium perturbation for the PDE
For d ≥ 3, one expects an order of N−1 correction to the hydrodynamic
equation: (the fluctuation has order N−d/2)

∂tρ
N + m · ∇f (ρN) =

1
N

d∑
i,j=1

∂ui

[
Di,j(ρ

N)∂ujρ
N].

For ρ∗ ∈ [0, 1], consider

ρN(t, u) = ρ∗ +
1

Nα
aN

( t
Nγ

, u
)
.

Then,

∂tρ
N(t, u) = 1

Nγ+α
aN( t

Nγ , u), Di,j(ρN(t, u)) = Di,j(ρ∗) + O(N−α),

f (ρN(t, u)) = f (ρ∗) +
f ′(ρ∗)

Nα
aN( t

Nγ , u) +
f ′′(ρ∗)
2Nα

[aN( t
Nγ , u)]2 + O(N−3α).
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Inserting the above Taylor expansions to the corrected hydrodynamic
equation,

∂taN + Nγ f ′(ρ∗)m · ∇aN +
1
2Nγ−αf ′′(ρ∗)m · ∇[(aN)2]

= Nγ−1
d∑

i,j=1
Di,j(ρ∗)∂

2
ui,uja

N + O(Nγ−α−1 + Nγ−2α).

The blue term can be removed by a Galilean transformation

aN(t, u) = bN(t, u − mtNγ f ′(ρ∗)).

Finally,

∂tbN +
1
2Nγ−αf ′′(ρ∗)m · ∇[(bN)2]

= Nγ−1
d∑

i,j=1
Di,j(ρ∗)∂

2
ui,ujb

N + O(Nγ−α−1 + Nγ−2α).
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∂tbN +
1
2Nγ−αf ′′(ρ∗)m · ∇[(bN)2]

= Nγ−1
d∑

i,j=1
Di,j(ρ∗)∂

2
ui,ujb

N + O(Nγ−α−1 + Nγ−2α).

Define b(t, u) = limN→∞ bN(t, u).

If γ = α = 1,

∂tb +
1
2 f ′′(ρ∗)m · ∇b2 =

d∑
i,j=1

Di,j(ρ∗)∂
2
ui,ujb ;

If γ = α < 1,
∂tb +

1
2 f ′′(ρ∗)m · ∇b2 = 0 ;

If γ = 1 < α,

∂tb =

d∑
i,j=1

Di,j(ρ∗)∂
2
ui,ujb.
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Phase transition in d ≥ 3
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Equilibrium perturbation for the IPS
By hydrodynamic limits theory,

1
Nd

∑
x∈Zd

ηx(tN)H(x/N) ≈
∫
Rd

ρN(t, v)H(v)dv.

For u ∈ Rd, take

H(v) = Hu(v) = (2ε)−d1{|u − v| ≤ ε},

then

1
(2εN)d

∑
|x−uN|≤εN

ηx(tN) ≈ ρN(t, u) = ρ∗ +
1

Nα
bN

(
t

Nγ , u − mtf ′(ρ∗)
)
.

Thus,

bN(t, u) ≈ Nα

(2εN)d

∑
|x−(u+mtNγ f ′(ρ∗))N|≤εN

(ηx(tN1+γ)− ρ∗).
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bN(t, u) ≈ Nα

(2εN)d

∑
|x−(u+mtNγ f ′(ρ∗))N|≤εN

(ηx(tN1+γ)− ρ∗).

Therefore, under mild conditions, we expect that for any test function H,

lim
N→∞

1
Nd−α

∑
x∈Zd

(
ηx(tN1+γ)− ρ∗

)
H
( x

N − mtNγ f ′(ρ∗)
)

=

∫
Rd

b(t, u)H(u)du in probability.
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Related literature

Asymmetric EP in d ≥ 3 [Esposito-Marra-Yau’1994, Rev. Math.
Phys.]: γ = α = 1,

lim
N→∞

1
Nd−1

∑
x∈Zd

(
ηx(tN 2)− ρ∗

)
H
( x

N − mtNf ′(ρ∗)
)

=

∫
Rd

b(t, u)H(u)du in probability,

where

∂tb +
1
2 f ′′(ρ∗)m · ∇b2 =

d∑
i,j=1

Di,j(ρ∗)∂
2
ui,ujb.

Above, Di,j is given by a variational formula.

The correct time scaling for d = 1 should be N 3/2, while for d = 2 there is
a logarithmic correction to N 2.
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Hammersley’s model in d = 1 [Seppäläinen’2001, AoP]: for
γ = α < 1/2, the limit is inviscid Burgers equation. Coupling
techniques.
Deposition models in d = 1 [Tóth-Valkó’2002, JSP]: γ = α < 1/5.
Relative entropy method, only in the smooth regime.
Weakly asymmetric EP in d ≥ 1 [Jara-Landim-Tsunoda’2021, AIHP]:
for γ = 1 and under some constraints on α, the limit is viscous Burgers
equation. Improved relative entropy method by Jara and Menezes.
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Generalized exclusion process
The state space is Ω = {0, 1, . . . ,K}Td

N . For η ∈ Ω, ηx ∈ {0, 1, . . . ,K} is
the number of particles at site x. For 1 ≤ i ≤ d, a particle jumps from site x
to site x ± ei at rate

piηx(K − ηx+ei) and qiηx(K − ηx−ei).

We assume pi − qi ̸= 0 for some 1 ≤ i ≤ d, and denote

m = (mi)1≤i≤d = (pi − qi)1≤i≤d.

The process has a family of product invariant measures νN
ρ on Ω indexed by

particle density ρ ∈ [0,K],

νN
ρ (ηx = k) =

(
K
k

)( ρ

K

)k(
1 − ρ

K

)K−k
, k = 0, 1, . . . ,K.
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k

)( ρ

K

)k(
1 − ρ

K

)K−k
, k = 0, 1, . . . ,K.
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For any profile ρ : Td → [0,K], define νN
ρ(·) as the product measure on Ω

with marginals

νN
ρ(·)(ηx = k) = νN

ρ(x/N)(ηx = k), x ∈ Td
N, k = 1, . . . ,K.

Define the reference profile

ρN(t, u) = ρ∗ + N−αb(tNγ−α, u − mtNγ f ′(ρ∗)),

where, f(ρ) = ρ(K − ρ), and

∂tb = m · ∇b2.

Let νN
t = νN

ρN(t,·) be the reference measure.
Recall the relative entropy is defined as

H(µ|ν) =
∫

f log f dν, f = dµ
dν .
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Main results [Xu-Z.’2023, EJP]

Let µN
t be the distribution of the process at time tN1+γ . If

H(µN
0 |νN

0 ) = o(Nd−2α),

then under some constraints on γ and α, for any t > 0 such that b(t, u) is
smooth,

H(µN
t |νN

t ) = o(Nd−2α).

As a corollary, for any t > 0 and test function H,

lim
N→∞

1
Nd−α

∑
x∈Td

N

(ηx(tN1+γ)− ρ∗)H( x
N − mf ′(ρ∗)tNγ)

=

∫
Td

b̃(t, u)H(u)du in probability.
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d = 1
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d ≥ 2
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1-d chain of anharmonic oscillators

px−1
qx−1

px
qx

px+1
qx+1

rx

Above, px = momentum of the particle x ; qx = position of the particle x ;
rx = qx − qx−1 the inter-particle distance. Assume V ∈ C2(R) with bounded
second derivative. We consider the periodic case x ∈ TN.

dpx(t) =
[
V ′(rx+1(t))− V ′(rx(t))

]
dt,

drx(t) =
[
px(t)− px−1(t)

]
dt
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dpx(t) =
[
V ′(rx+1(t))− V ′(rx(t))

]
dt,

drx(t) =
[
px(t)− px−1(t)

]
dt

Momentum
∑

px, volume
∑

rx and energy
∑

[V(rx)+p2
x/2] are conserved.
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drx(t) =
[
px(t)− px−1(t)

]
dt

+
βκN

2
[
V ′(rx+1(t)) + V ′(rx−1(t))− 2V ′(rx(t))

]
dt

+
√
κN

[
dBx−1

t − dBx
t
]
.
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+
√
κN

[
dBx−1

t − dBx
t
]
.

Only momentum
∑

px and volume
∑

rx are conserved.
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The hydrodynamic equation is given by the following p-system

∂tp = ∂uτ (r), ∂tr = ∂up.

Above, p = p(t, u), r = r(t, u) for u ∈ T, and τ = τ (r) is the equilibrium
tension.

Fix p∗ and r∗ such that τ ′(r∗) ̸= 0 (strict hyperbolicity).
The current of the system is

J(p, r) = (−τ (r),−p).

Let
A =

(
∂pJ p ∂rJ p

∂pJ r ∂rJ r

) ∣∣∣
(p∗,r∗)

=

(
0 −τ ′(r∗)

−1 0

)
The matrix A has two eigenvalues ±

√
τ ′(r∗) with corresponding right

eigenvalues

v+ :=

(
−
√
τ ′(r∗)

1

)
v− :=

(√
τ ′(r∗)

1

)
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Main results [Xu-Z.’2023, EJP]

Assume initially, for any test function H,

lim
N→∞

1
N1−α

∑
x∈TN

(
px(0)− p∗
rx(0)− r∗

)
H
( x

N

)
=

∑
j=±

vj

∫
T
σini

j (u)H(u)du in probability,

where σini
± are the initial profiles satisfying∫

T
σini
+ du =

∫
T
σini
− du = 0.

Linjie Zhao (HUST) Two conservation laws 23 / 27



Assume the initial relative entropy has order o(N1−2α), and under some
constraints on γ and α, if N 5γ+4α−1 ≪ κN ≪ N 1−γ , then for any test
function H,

lim
N→∞

1
N1−α

∑
x∈TN

(
− px(tN1+γ)− p∗√

τ ′(r∗)
+ (rx(tN1+γ)− r∗)

)
× H

( x
N + Nγt

√
τ ′(r∗)

)
=

∫
T
σ−(t, u)H(u)du in probability,

lim
N→∞

1
N1−α

∑
x∈TN

(px(tN1+γ)− p∗√
τ ′(r∗)

+ (rx(tN1+γ)− r∗)
)

× H
( x

N − Nγt
√
τ ′(r∗)

)
=

∫
T
σ+(t, u)H(u)du in probability.

We observe the evolution of perturbed conserved quantities along the
characteristic lines.
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Related literature

For 1-d systems with two conservation laws,
▶ if the equilibrium point is hyperbolic, then the perturbed quantities

evolve according to two decoupled Burgers equation [Valkó’2006,
AIHP];

▶ if the equilibrium point is NOT hyperbolic, then the small perturbations
are driven by a two-by-two system [Tóth-Valkó’2005, CMP].

It is always non-resonant for 1-d systems with two conservation laws,
which is not the case for systems with three or more conservation laws.
EP with collisions: d ≥ 3 [Esposito-Marra-Yau’1996, CMP], weakly
asymmetric [Meurs-Tsunoda-Xu’2024, arXiv:2402.10375].
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Thanks!
Email: linjie_zhao@hust.edu.cn
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