Equilibrium perturbations for stochastic interacting systems

Linjie Zhao¹ (joint work with Lu Xu²)

 $^1\mathrm{Huazhong}$ University of Science and Technology, China $^2\mathrm{Gran}$ Sasso Science Institute, Italy

Analysis, PDE & Probability Seminar (KIAS) April 2024

2 / 27

The exclusion process

Figure: ASEP: $p = 1 - q \in (1/2, 1]$.

The exclusion process

Figure: ASEP: $p = 1 - q \in (1/2, 1]$.

The configuration space is $\Omega := \{0, 1\}^{\mathbb{Z}^d}$. For any $\eta \in \Omega$ and $x \in \mathbb{Z}^d$, $\eta_x \in \{0, 1\}$ is the number of particles at site x.

- 4 回 ト 4 三 ト 4 三 ト

The exclusion process

Figure: ASEP: $p = 1 - q \in (1/2, 1]$.

The configuration space is $\Omega := \{0, 1\}^{\mathbb{Z}^d}$. For any $\eta \in \Omega$ and $x \in \mathbb{Z}^d$, $\eta_x \in \{0, 1\}$ is the number of particles at site x. Generator of the process $\eta(t)$: for local functions f on Ω ,

$$Lf(\eta) = \sum_{x,y \in \mathbb{Z}^d} p(y-x)\eta_x(1-\eta_y)[f(\eta^{x,y}) - f(\eta)],$$

where $\eta_z^{x,y} = \eta_x$ for z = y, $= \eta_y$ for z = x, and $= \eta_z$ otherwise.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Hydrodynamic limits

Assume $m := \sum_{x \in \mathbb{Z}^d} xp(x) \neq 0$. Define the empirical measure of the process

$$\pi_t^N(du) = \frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) \delta_{x/N}(du).$$

・ロト ・四ト ・ヨト ・ヨト 3 4 / 27

Hydrodynamic limits

Assume $m := \sum_{x \in \mathbb{Z}^d} xp(x) \neq 0$. Define the empirical measure of the process

$$\pi_t^N(du) = \frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) \delta_{x/N}(du).$$

Under mild conditions,

$$\lim_{N\to\infty}\pi^N_t(du)=\rho(t,u)du\quad\text{in probability},$$

where the hydrodynamic equation is

$$\partial_t \rho(t, u) + m \cdot \nabla f(\rho(t, u)) = 0$$

with initial condition ρ_{ini} . Above, $f(\rho) = \rho(1-\rho)$.

ヘロン 人間 とくほ とくほ とう

3

Hydrodynamic limits

Assume $m := \sum_{x \in \mathbb{Z}^d} xp(x) \neq 0$. Define the empirical measure of the process

$$\pi_t^N(du) = \frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) \delta_{x/N}(du).$$

Under mild conditions,

$$\lim_{N\to\infty}\pi^N_t(du)=\rho(t,u)du\quad\text{in probability},$$

where the hydrodynamic equation is

$$\partial_t \rho(t, u) + m \cdot \nabla f(\rho(t, u)) = 0$$

with initial condition ρ_{ini} . Above, $f(\rho) = \rho(1-\rho)$.

- Relative entropy method only in the smooth regime [Yau'1991];
- Attractiveness method [Rezakhanlou'1991].

$$\eta(0) \le \zeta(0) \Rightarrow \eta(t) \le \zeta(t).$$

Navier-Stokes corrections

One expects an order of N^{-1} correction to the hydrodynamic equation [Page 185, Kipnis-Landim'1998]:

$$\partial_t \rho^N + m \cdot \nabla f(\rho^N) = \frac{1}{N} \sum_{i,j=1}^d \partial_{u_i} \left[D_{i,j}(\rho^N) \partial_{u_j} \rho^N \right].$$

Navier-Stokes corrections

One expects an order of N^{-1} correction to the hydrodynamic equation [Page 185, Kipnis-Landim'1998]:

$$\partial_t \rho^N + m \cdot \nabla f(\rho^N) = \frac{1}{N} \sum_{i,j=1}^d \partial_{u_i} \left[D_{i,j}(\rho^N) \partial_{u_j} \rho^N \right].$$

• First order correction. Define

$$q^{N}(t, u) := \mathbb{E}[\eta_{[uN]}(tN)].$$

Then, under suitable initial conditions,

$$\lim_{N \to \infty} N[q^N - \rho^N] = 0$$

in a weak sense.

Asymmetric EP in $d \ge 3$ [Landim-Olla-Yau'1997, CPAM],

EP with speed change in $d \ge 3$ [Janvresse'1998, AoP].

• Long time behavior. If

$$\partial_t \rho(t, u) + m \cdot \nabla f(\rho(t, u)) = 0,$$

then the entropy solution converges to a stationary solution which is constant along the drift:

$$\lim_{t \to \infty} \rho(t, u) = \int \rho_{\text{ini}}(u + mr) dr.$$

・ロト ・回ト ・ヨト ・ヨト

3

• Long time behavior. If

$$\partial_t \rho(t, u) + m \cdot \nabla f(\rho(t, u)) = 0,$$

then the entropy solution converges to a stationary solution which is constant along the drift:

$$\lim_{t \to \infty} \rho(t, u) = \int \rho_{\text{ini}}(u + mr) dr.$$

Thus, under diffusive scaling, one expects that

$$m \cdot \nabla \lim_{N \to \infty} \mathbb{E}[\eta_{[uN]}(tN^2)] = 0,$$

and that on the hyperplane orthogonal to the drift, the profile obeys a parabolic equation.

Asymmetric ZRP in $d \ge 2$ [Benois-Koukkous-Landim'1997, JSP],

Asymmetric EP in $d \ge 3$ [Landim-Sued-Valle'2004, CMP].

Long time behavior. If

$$\partial_t \rho(t, u) + m \cdot \nabla f(\rho(t, u)) = 0,$$

then the entropy solution converges to a stationary solution which is constant along the drift:

$$\lim_{t \to \infty} \rho(t, u) = \int \rho_{\text{ini}}(u + mr) dr.$$

Thus, under diffusive scaling, one expects that

$$m \cdot \nabla \lim_{N \to \infty} \mathbb{E}[\eta_{[uN]}(tN^2)] = 0,$$

and that on the hyperplane orthogonal to the drift, the profile obeys a parabolic equation.

Asymmetric ZRP in $d \ge 2$ [Benois-Koukkous-Landim'1997, JSP],

Asymmetric EP in $d \ge 3$ [Landim-Sued-Valle'2004, CMP].

• The incompressible limit...

・ロン ・四 と ・ ヨ と ・ ヨ と

Equilibrium perturbation for the PDE

For $d \ge 3$, one expects an order of N^{-1} correction to the hydrodynamic equation: (the fluctuation has order $N^{-d/2}$)

$$\partial_t \rho^N + m \cdot \nabla f(\rho^N) = \frac{1}{N} \sum_{i,j=1}^d \partial_{u_i} \left[D_{i,j}(\rho^N) \partial_{u_j} \rho^N \right].$$

◆□▶★圖▶★≧▶★≧▶ 差 の()

7 / 27

Equilibrium perturbation for the PDE

For $d \ge 3$, one expects an order of N^{-1} correction to the hydrodynamic equation: (the fluctuation has order $N^{-d/2}$)

$$\partial_t \rho^N + m \cdot \nabla f(\rho^N) = \frac{1}{N} \sum_{i,j=1}^d \partial_{u_i} \left[D_{i,j}(\rho^N) \partial_{u_j} \rho^N \right].$$

For $\rho_* \in [0,1]$, consider

$$\rho^{N}(t,u) = \rho_{*} + \frac{1}{N^{\alpha}} a^{N} \left(\frac{t}{N^{\gamma}}, u\right).$$

・ロト ・四ト ・ヨト ・ヨト

Equilibrium perturbation for the PDE

For $d \ge 3$, one expects an order of N^{-1} correction to the hydrodynamic equation: (the fluctuation has order $N^{-d/2}$)

$$\partial_t \rho^N + m \cdot \nabla f(\rho^N) = \frac{1}{N} \sum_{i,j=1}^d \partial_{u_i} \left[D_{i,j}(\rho^N) \partial_{u_j} \rho^N \right].$$

For $\rho_* \in [0,1]$, consider

$$\rho^{N}(t, u) = \rho_* + \frac{1}{N^{\alpha}} a^{N} \left(\frac{t}{N^{\gamma}}, u\right).$$

Then,

$$\begin{aligned} \partial_t \rho^N(t, u) &= \frac{1}{N^{\gamma + \alpha}} a^N(\frac{t}{N^{\gamma}}, u), \qquad D_{i,j}(\rho_N(t, u)) = D_{i,j}(\rho_*) + O(N^{-\alpha}), \\ f(\rho^N(t, u)) &= f(\rho_*) + \frac{f'(\rho_*)}{N^{\alpha}} a^N(\frac{t}{N^{\gamma}}, u) + \frac{f''(\rho_*)}{2N^{\alpha}} [a^N(\frac{t}{N^{\gamma}}, u)]^2 + O(N^{-3\alpha}). \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

Inserting the above Taylor expansions to the corrected hydrodynamic equation,

$$\begin{aligned} \partial_t a^N &+ N^{\gamma} f'(\rho_*) m \cdot \nabla a^N + \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(a^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 a^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{aligned}$$

ヘロト ヘヨト ヘヨト ヘヨト

8 / 27

Inserting the above Taylor expansions to the corrected hydrodynamic equation,

$$\begin{aligned} \partial_t a^N &+ N^{\gamma} f'(\rho_*) m \cdot \nabla a^N + \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(a^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 a^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{aligned}$$

The blue term can be removed by a Galilean transformation

$$a^{N}(t, u) = b^{N}(t, u - mtN^{\gamma}f'(\rho_{*})).$$

Finally,

$$\begin{aligned} \partial_t b^N &+ \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(b^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨト

2

$$\begin{split} \partial_t b^N &+ \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(b^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{split}$$

Define $b(t, u) = \lim_{N \to \infty} b^N(t, u)$.

Linjie Zhao (HUST)

ヘロン 人間 とくほ とくほ とう

9 / 27

æ –

$$\begin{split} \partial_t b^N &+ \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(b^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{split}$$

 $\begin{array}{l} \mbox{Define } b(t,u) = \lim_{N \to \infty} b^N(t,u). \\ \bullet \mbox{ If } \gamma = \alpha = 1, \end{array} \end{array}$

$$\partial_t b + \frac{1}{2} f''(\rho_*) m \cdot \nabla b^2 = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial^2_{u_i,u_j} b;$$

<ロ> <問> <問> < E> < E> 、

а.

$$\begin{split} \partial_t b^N &+ \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(b^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{split}$$

Define $b(t, u) = \lim_{N \to \infty} b^N(t, u)$. • If $\gamma = \alpha = 1$,

$$\partial_t b + \frac{1}{2} f^{\prime\prime}(\rho_*) m \cdot \nabla b^2 = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b;$$

• If $\gamma=\alpha<1,$ $\partial_t b + \frac{1}{2}f''(\rho_*)m\cdot\nabla b^2 = 0\,;$

・ロト ・回ト ・ヨト ・ヨト

3

$$\begin{split} \partial_t b^N &+ \frac{1}{2} N^{\gamma - \alpha} f''(\rho_*) m \cdot \nabla [(b^N)^2] \\ &= N^{\gamma - 1} \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial_{u_i,u_j}^2 b^N + O(N^{\gamma - \alpha - 1} + N^{\gamma - 2\alpha}). \end{split}$$

 $\begin{array}{l} \mbox{Define } b(t,u) = \lim_{N \to \infty} b^N(t,u). \\ \bullet \mbox{ If } \gamma = \alpha = 1, \end{array} \end{array}$

$$\partial_t b + \frac{1}{2} f^{\prime\prime}(\rho_*) m \cdot \nabla b^2 = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial^2_{u_i,u_j} b;$$

• If
$$\gamma=\alpha<1,$$

$$\partial_t b + \frac{1}{2} f''(\rho_*) m \cdot \nabla b^2 = 0 \, ;$$

 $\bullet \ \text{ If } \gamma = 1 < \alpha \text{,}$

$$\partial_t b = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial^2_{u_i,u_j} b.$$

Phase transition in $d \ge 3$

ヘロア 人間 アメヨア メヨア

10 / 27

2

Equilibrium perturbation for the IPS

By hydrodynamic limits theory,

$$\frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) H(x/N) \approx \int_{\mathbb{R}^d} \rho^N(t, v) H(v) dv.$$

<ロ> <四> <ヨ> <ヨ> 2 11 / 27

Equilibrium perturbation for the IPS

By hydrodynamic limits theory,

$$\frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) H(x/N) \approx \int_{\mathbb{R}^d} \rho^N(t, v) H(v) dv.$$

For $u \in \mathbb{R}^d$, take

$$H(v) = H_u(v) = (2\varepsilon)^{-d} \mathbf{1}\{|u - v| \le \varepsilon\},\$$

then

$$\frac{1}{(2\varepsilon N)^d} \sum_{|x-uN| \le \varepsilon N} \eta_x(tN) \approx \rho^N(t,u) = \rho_* + \frac{1}{N^\alpha} b^N\Big(\frac{t}{N^\gamma}, u - mtf'(\rho_*)\Big).$$

<ロ> <問> <問> < E> < E> 、

э

Equilibrium perturbation for the IPS

By hydrodynamic limits theory,

$$\frac{1}{N^d} \sum_{x \in \mathbb{Z}^d} \eta_x(tN) H(x/N) \approx \int_{\mathbb{R}^d} \rho^N(t, v) H(v) dv.$$

For $u \in \mathbb{R}^d$, take

$$H(v) = H_u(v) = (2\varepsilon)^{-d} \mathbf{1}\{|u - v| \le \varepsilon\},\$$

then

$$\frac{1}{(2\varepsilon N)^d} \sum_{|x-uN| \le \varepsilon N} \eta_x(tN) \approx \rho^N(t,u) = \rho_* + \frac{1}{N^\alpha} b^N\Big(\frac{t}{N^\gamma}, u - mtf'(\rho_*)\Big).$$

Thus,

$$b^{N}(t,u) \approx \frac{N^{\alpha}}{(2\varepsilon N)^{d}} \sum_{|x-(u+mtN^{\gamma}f'(\rho_{*}))N| \leq \varepsilon N} (\eta_{x}(tN^{1+\gamma}) - \rho_{*}).$$

Linjie Zhao (HUST)

One conservation law

11 / 27

$$b^N(t,u)\approx \frac{N^{\alpha}}{(2\varepsilon N)^d}\sum_{|x-(u+mtN^{\gamma}f'(\rho_*))N|\leq \varepsilon N}(\eta_x(tN^{1+\gamma})-\rho_*).$$

Therefore, under mild conditions, we expect that for any test function H,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{d-\alpha}} \sum_{x \in \mathbb{Z}^d} \left(\eta_x(tN^{1+\gamma}) - \rho_* \right) H\!\left(\frac{x}{N} - mtN^{\gamma} f'(\rho_*) \right) \\ &= \int_{\mathbb{R}^d} b(t, u) H\!(u) du \quad \text{in probability.} \end{split}$$

ヘロト ヘロト ヘヨト ヘヨト

2

• Asymmetric EP in $d \ge 3$ [Esposito-Marra-Yau'1994, Rev. Math. Phys.]: $\gamma = \alpha = 1$,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{d-1}} \sum_{x \in \mathbb{Z}^d} \left(\eta_x(tN^2) - \rho_* \right) H\!\left(\frac{x}{N} - mtN\!f'(\rho_*) \right) \\ &= \int_{\mathbb{R}^d} b(t, u) H\!(u) du \quad \text{in probability}, \end{split}$$

where

$$\partial_t b + \frac{1}{2} f''(\rho_*) m \cdot \nabla b^2 = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial^2_{u_i,u_j} b.$$

Above, $D_{i,j}$ is given by a variational formula.

・ロト ・四ト ・ヨト ・ヨト

3

• Asymmetric EP in $d \ge 3$ [Esposito-Marra-Yau'1994, Rev. Math. Phys.]: $\gamma = \alpha = 1$,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{d-1}} \sum_{x \in \mathbb{Z}^d} \left(\eta_x(tN^2) - \rho_* \right) H\!\left(\frac{x}{N} - mtN\!f'(\rho_*) \right) \\ &= \int_{\mathbb{R}^d} b(t, u) H\!(u) du \quad \text{in probability}, \end{split}$$

where

$$\partial_t b + \frac{1}{2} f''(\rho_*) m \cdot \nabla b^2 = \sum_{i,j=1}^d D_{i,j}(\rho_*) \partial^2_{u_i,u_j} b.$$

Above, $D_{i,j}$ is given by a variational formula.

The correct time scaling for d = 1 should be $N^{3/2}$, while for d = 2 there is a logarithmic correction to N^2 .

ヘロン 人間 とくほ とくほ とう

13 / 27

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ …

2

▲口>▲圖>▲目>▲目> 目 のへの

15 / 27

• Hammersley's model in d = 1 [Seppäläinen'2001, AoP]: for $\gamma = \alpha < 1/2$, the limit is inviscid Burgers equation. Coupling techniques.

・ロン ・四 と ・ ヨ と ・ ヨ と

15 / 27

æ

- Hammersley's model in d = 1 [Seppäläinen'2001, AoP]: for $\gamma = \alpha < 1/2$, the limit is inviscid Burgers equation. Coupling techniques.
- Deposition models in d = 1 [Tóth-Valkó'2002, JSP]: $\gamma = \alpha < 1/5$. Relative entropy method, only in the smooth regime.

・ロン ・回 と ・ ヨン ・ ヨン

- Hammersley's model in d = 1 [Seppäläinen'2001, AoP]: for $\gamma = \alpha < 1/2$, the limit is inviscid Burgers equation. Coupling techniques.
- Deposition models in d = 1 [Tóth-Valkó'2002, JSP]: $\gamma = \alpha < 1/5$. Relative entropy method, only in the smooth regime.
- Weakly asymmetric EP in $d \ge 1$ [Jara-Landim-Tsunoda'2021, AIHP]: for $\gamma = 1$ and under some constraints on α , the limit is viscous Burgers equation. Improved relative entropy method by Jara and Menezes.

イロト 不得 トイヨト イヨト

Generalized exclusion process

The state space is $\Omega = \{0, 1, ..., K\}^{\mathbb{T}_N^d}$. For $\eta \in \Omega$, $\eta_x \in \{0, 1, ..., K\}$ is the number of particles at site x. For $1 \le i \le d$, a particle jumps from site x to site $x \pm e_i$ at rate

$$p_i\eta_x(K-\eta_{x+e_i})$$
 and $q_i\eta_x(K-\eta_{x-e_i})$.

(日)

16 / 27

Generalized exclusion process

The state space is $\Omega = \{0, 1, ..., K\}^{\mathbb{T}_N^d}$. For $\eta \in \Omega$, $\eta_x \in \{0, 1, ..., K\}$ is the number of particles at site x. For $1 \le i \le d$, a particle jumps from site x to site $x \pm e_i$ at rate

$$p_i\eta_x(K-\eta_{x+e_i})$$
 and $q_i\eta_x(K-\eta_{x-e_i})$.

We assume $p_i - q_i \neq 0$ for some $1 \leq i \leq d$, and denote

$$m = (m_i)_{1 \le i \le d} = (p_i - q_i)_{1 \le i \le d}.$$

イロト 不得 トイヨト イヨト

Generalized exclusion process

The state space is $\Omega = \{0, 1, ..., K\}^{\mathbb{T}_N^d}$. For $\eta \in \Omega$, $\eta_x \in \{0, 1, ..., K\}$ is the number of particles at site x. For $1 \le i \le d$, a particle jumps from site x to site $x \pm e_i$ at rate

$$p_i\eta_x(K-\eta_{x+e_i})$$
 and $q_i\eta_x(K-\eta_{x-e_i})$.

We assume $p_i - q_i \neq 0$ for some $1 \leq i \leq d$, and denote

$$m = (m_i)_{1 \le i \le d} = (p_i - q_i)_{1 \le i \le d}.$$

The process has a family of product invariant measures ν_{ρ}^{N} on Ω indexed by particle density $\rho \in [0, K]$,

$$\nu_{\rho}^{N}(\eta_{x}=k) = {\binom{K}{k}} {\left(\frac{\rho}{K}\right)}^{k} {\left(1-\frac{\rho}{K}\right)}^{K-k}, \quad k=0,1,\ldots,K.$$

For any profile $\rho:\mathbb{T}^d\to [0,K]$, define $\nu^N_{\rho(\cdot)}$ as the product measure on Ω with marginals

$$\nu_{\rho(\cdot)}^{N}(\eta_{x}=k) = \nu_{\rho(x/N)}^{N}(\eta_{x}=k), \quad x \in \mathbb{T}_{N}^{d}, \ k = 1, \dots, K.$$

For any profile $\rho:\mathbb{T}^d\to [0,K],$ define $\nu^N_{\rho(\cdot)}$ as the product measure on Ω with marginals

$$\nu_{\rho(\cdot)}^N(\eta_x=k)=\nu_{\rho(x/N)}^N(\eta_x=k), \quad x\in\mathbb{T}_N^d, \ k=1,\ldots,K.$$

Define the reference profile

$$\rho^{N}(t,u) = \rho_* + N^{-\alpha} b(tN^{\gamma-\alpha}, u - mtN^{\gamma}f'(\rho_*)),$$

where, $f(\rho) = \rho(K - \rho)$, and

$$\partial_t b = m \cdot \nabla b^2.$$

Let $\nu_t^N = \nu_{\rho^N(t,\cdot)}^N$ be the reference measure.

イロト イヨト イヨト イヨト 二日

17 / 27

For any profile $\rho:\mathbb{T}^d\to [0,K],$ define $\nu^N_{\rho(\cdot)}$ as the product measure on Ω with marginals

$$\nu_{\rho(\cdot)}^N(\eta_x=k)=\nu_{\rho(x/N)}^N(\eta_x=k), \quad x\in\mathbb{T}_N^d, \ k=1,\ldots,K.$$

Define the reference profile

$$\rho^{N}(t,u) = \rho_* + N^{-\alpha} b(tN^{\gamma-\alpha}, u - mtN^{\gamma}f'(\rho_*)),$$

where, $f(\rho) = \rho(K - \rho)$, and

$$\partial_t b = m \cdot \nabla b^2.$$

Let $\nu_t^N = \nu_{\rho^N(t,\cdot)}^N$ be the reference measure. Recall the relative entropy is defined as

$$H(\mu|\nu) = \int f \log f \, d\nu, \quad f = \frac{d\mu}{d\nu}.$$

Main results [Xu-Z.'2023, EJP]

Let μ_t^N be the distribution of the process at time $tN^{1+\gamma}$. If

$$H(\mu_0^N|\nu_0^N) = o(N^{d-2\alpha}),$$

then under some constraints on γ and $\alpha,$ for any t>0 such that b(t,u) is smooth,

$$H(\mu_t^N|\nu_t^N) = o(N^{d-2\alpha}).$$

ヘロン 人間 とくほ とくほ とう

э

Main results [Xu-Z.'2023, EJP]

Let μ_t^N be the distribution of the process at time $tN^{1+\gamma}$. If

$$H(\mu_0^N|\nu_0^N) = o(N^{d-2\alpha}),$$

then under some constraints on γ and $\alpha,$ for any t>0 such that b(t,u) is smooth,

$$H(\mu_t^N|\nu_t^N) = o(N^{d-2\alpha}).$$

As a corollary, for any t > 0 and test function H,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{d-\alpha}} \sum_{x \in \mathbb{T}_N^d} &(\eta_x (tN^{1+\gamma}) - \rho_*) H(\frac{x}{N} - mf'(\rho_*) tN^{\gamma}) \\ &= \int_{\mathbb{T}^d} \tilde{b}(t, u) H(u) du \quad \text{in probability.} \end{split}$$

ヘロン 人間 とくほ とくほ とう

d = 1

・ロト ・西ト ・ヨト ・ヨト

2

 $d \geq 2$

ヘロン 人間 とくほと 人間と

20 / 27

Above, $p_x =$ momentum of the particle x; $q_x =$ position of the particle x; $r_x = q_x - q_{x-1}$ the inter-particle distance. Assume $V \in C^2(\mathbb{R})$ with bounded second derivative. We consider the periodic case $x \in \mathbb{T}_N$.

$$dp_x(t) = \left[V'(r_{x+1}(t)) - V'(r_x(t)) \right] dt, dr_x(t) = \left[p_x(t) - p_{x-1}(t) \right] dt$$

Linjie Zhao (HUST)

- 4 回 ト 4 三 ト

21 / 27

Above, $p_x =$ momentum of the particle x; $q_x =$ position of the particle x; $r_x = q_x - q_{x-1}$ the inter-particle distance. Assume $V \in C^2(\mathbb{R})$ with bounded second derivative. We consider the periodic case $x \in \mathbb{T}_N$.

$$dp_x(t) = \left[V'(r_{x+1}(t)) - V'(r_x(t)) \right] dt$$
$$dr_x(t) = \left[p_x(t) - p_{x-1}(t) \right] dt$$

Momentum $\sum p_x$, volume $\sum r_x$ and energy $\sum [V(r_x) + p_x^2/2]$ are conserved.

・ロト ・ 一 ・ ・ ヨト ・ 日 ・

Above, $p_x =$ momentum of the particle x; $q_x =$ position of the particle x; $r_x = q_x - q_{x-1}$ the inter-particle distance. Assume $V \in C^2(\mathbb{R})$ with bounded second derivative. We consider the periodic case $x \in \mathbb{T}_N$.

$$\begin{split} dp_x(t) &= \left[V'(r_{x+1}(t)) - V'(r_x(t)) \right] dt, \\ dr_x(t) &= \left[p_x(t) - p_{x-1}(t) \right] dt \\ &+ \frac{\beta \kappa_N}{2} \left[V'(r_{x+1}(t)) + V'(r_{x-1}(t)) - 2V'(r_x(t)) \right] dt \\ &+ \sqrt{\kappa_N} \left[dB_t^{x-1} - dB_t^x \right]. \end{split}$$

21 / 27

(1日) (1日) (1日)

Above, $p_x =$ momentum of the particle x; $q_x =$ position of the particle x; $r_x = q_x - q_{x-1}$ the inter-particle distance. Assume $V \in C^2(\mathbb{R})$ with bounded second derivative. We consider the periodic case $x \in \mathbb{T}_N$.

$$dp_x(t) = \left[V'(r_{x+1}(t)) - V'(r_x(t)) \right] dt,$$

$$dr_x(t) = \left[p_x(t) - p_{x-1}(t) \right] dt$$

$$+ \frac{\beta \kappa_N}{2} \left[V'(r_{x+1}(t)) + V'(r_{x-1}(t)) - 2V'(r_x(t)) \right] dt$$

$$+ \sqrt{\kappa_N} \left[dB_t^{x-1} - dB_t^x \right].$$

Only momentum $\sum p_x$ and volume $\sum r_x$ are conserved.

ヘロト 人間ト ヘヨト ヘヨト

21 / 27

The hydrodynamic equation is given by the following p-system

Linjie Zhao (HUST)

$$\partial_t \mathfrak{p} = \partial_u \boldsymbol{\tau}(\mathfrak{r}), \quad \partial_t \mathfrak{r} = \partial_u \mathfrak{p}.$$

Above, $\mathfrak{p} = \mathfrak{p}(t, u), \mathfrak{r} = \mathfrak{r}(t, u)$ for $u \in \mathbb{T}$, and $\boldsymbol{\tau} = \boldsymbol{\tau}(\mathfrak{r})$ is the equilibrium tension.

22 / 27

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへ⊙

The hydrodynamic equation is given by the following p-system

$$\partial_t \mathfrak{p} = \partial_u \boldsymbol{\tau}(\mathfrak{r}), \quad \partial_t \mathfrak{r} = \partial_u \mathfrak{p}.$$

Above, $\mathfrak{p} = \mathfrak{p}(t, u), \mathfrak{r} = \mathfrak{r}(t, u)$ for $u \in \mathbb{T}$, and $\tau = \tau(\mathfrak{r})$ is the equilibrium tension.

Fix \mathfrak{p}_* and \mathfrak{r}_* such that $\tau'(\mathfrak{r}_*) \neq 0$ (strict hyperbolicity).

・ロト ・回ト ・ヨト ・ヨト

22 / 27

3

The hydrodynamic equation is given by the following *p*-system

$$\partial_t \mathfrak{p} = \partial_u \boldsymbol{\tau}(\mathfrak{r}), \quad \partial_t \mathfrak{r} = \partial_u \mathfrak{p}.$$

Above, $\mathfrak{p} = \mathfrak{p}(t, u), \mathfrak{r} = \mathfrak{r}(t, u)$ for $u \in \mathbb{T}$, and $\tau = \tau(\mathfrak{r})$ is the equilibrium tension.

Fix \mathfrak{p}_* and \mathfrak{r}_* such that $\tau'(\mathfrak{r}_*) \neq 0$ (strict hyperbolicity). The current of the system is

$$J(\mathfrak{p},\mathfrak{r}) = (-\boldsymbol{\tau}(\mathfrak{r}),-\mathfrak{p}).$$

Let

$$A = \begin{pmatrix} \partial_{\mathfrak{p}} J^{\mathfrak{p}} & \partial_{\mathfrak{r}} J^{\mathfrak{p}} \\ \partial_{\mathfrak{p}} J^{\mathfrak{r}} & \partial_{\mathfrak{r}} J^{\mathfrak{r}} \end{pmatrix} \Big|_{(\mathfrak{p}_*, \mathfrak{r}_*)} = \begin{pmatrix} 0 & -\boldsymbol{\tau}'(\mathfrak{r}_*) \\ -1 & 0 \end{pmatrix}$$

The matrix A has two eigenvalues $\pm \sqrt{\tau\,'(\mathfrak{r}_*)}$ with corresponding right eigenvalues

$$\mathbf{v}_{+} := \begin{pmatrix} -\sqrt{\tau'(\mathfrak{r}_{*})} \\ 1 \end{pmatrix} \quad \mathbf{v}_{-} := \begin{pmatrix} \sqrt{\tau'(\mathfrak{r}_{*})} \\ 1 \end{pmatrix}$$

イロト イヨト イヨト イヨト 二日

Main results [Xu-Z.'2023, EJP]

Assume initially, for any test function H,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{1-\alpha}} \sum_{x \in \mathbb{T}_N} \begin{pmatrix} p_x(0) - \mathfrak{p}_* \\ r_x(0) - \mathfrak{r}_* \end{pmatrix} H\!\!\left(\frac{x}{N}\right) \\ &= \sum_{j=\pm} \mathbf{v}_j \int_{\mathbb{T}} \sigma_j^{\mathrm{ini}}(u) H\!(u) du \quad \text{in probability,} \end{split}$$

where $\sigma_{\pm}^{\rm ini}$ are the initial profiles satisfying

$$\int_{\mathbb{T}} \sigma_+^{\text{ini}} du = \int_{\mathbb{T}} \sigma_-^{\text{ini}} du = 0.$$

・ロト ・四ト ・ヨト ・ヨト

э

Assume the initial relative entropy has order $o(N^{1-2\alpha})$, and under some constraints on γ and $\alpha,$ if $N^{5\gamma+4\alpha-1}\ll\kappa_N\ll N^{1-\gamma},$ then for any test function *H*,

> ・ロト ・四ト ・ヨト ・ヨト э 24 / 27

	 (1,1) = (2,-1)
1 1 1 1 1 1	

Assume the initial relative entropy has order $o(N^{1-2\alpha})$, and under some constraints on γ and α , if $N^{5\gamma+4\alpha-1} \ll \kappa_N \ll N^{1-\gamma}$, then for any test function H,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{1-\alpha}} \sum_{x \in \mathbb{T}_N} \Big(-\frac{p_x(tN^{1+\gamma}) - \mathfrak{p}_*}{\sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)}} + (r_x(tN^{1+\gamma}) - \mathfrak{r}_*) \Big) \\ & \times H \Big(\frac{x}{N} + N^{\gamma} t \sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)} \Big) = \int_{\mathbb{T}} \sigma_-(t, u) H(u) du \quad \text{in probability}, \end{split}$$

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{1-\alpha}} \sum_{x \in \mathbb{T}_N} \Big(\frac{p_x(tN^{1+\gamma}) - \mathfrak{p}_*}{\sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)}} + \big(r_x(tN^{1+\gamma}) - \mathfrak{r}_* \big) \Big) \\ & \times H \Big(\frac{x}{N} - N^{\gamma} t \sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)} \Big) = \int_{\mathbb{T}} \sigma_+(t, u) H(u) du \quad \text{in probability.} \end{split}$$

ヘロン 人間 とくほ とくほ とう

24 / 27

3

Assume the initial relative entropy has order $o(N^{1-2\alpha})$, and under some constraints on γ and α , if $N^{5\gamma+4\alpha-1} \ll \kappa_N \ll N^{1-\gamma}$, then for any test function H,

$$\begin{split} \lim_{N \to \infty} \frac{1}{N^{1-\alpha}} \sum_{x \in \mathbb{T}_N} \Big(-\frac{p_x(tN^{1+\gamma}) - \mathfrak{p}_*}{\sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)}} + (r_x(tN^{1+\gamma}) - \mathfrak{r}_*) \Big) \\ & \times H \Big(\frac{x}{N} + N^{\gamma} t \sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)} \Big) = \int_{\mathbb{T}} \sigma_-(t, u) H(u) du \quad \text{in probability}, \end{split}$$

$$\begin{split} &\lim_{N\to\infty}\frac{1}{N^{1-\alpha}}\sum_{x\in\mathbb{T}_N}\Big(\frac{p_x(tN^{1+\gamma})-\mathfrak{p}_*}{\sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)}}+\big(r_x(tN^{1+\gamma})-\mathfrak{r}_*\big)\Big)\\ &\times H\!\Big(\frac{x}{N}-N^{\gamma}t\sqrt{\boldsymbol{\tau}\,'(\mathfrak{r}_*)}\Big)=\int_{\mathbb{T}}\sigma_+(t,u)H\!(u)\,du \quad \text{in probability}. \end{split}$$

We observe the evolution of perturbed conserved quantities along the characteristic lines.

Linjie Zhao (HUST)

ヘロン 人間 とくほ とくほ とう

24 / 27

Linjie Zhao (HUST)

・ロト ・四ト ・ヨト ・ヨト

25 / 27

3

- For 1-d systems with two conservation laws,
 - if the equilibrium point is hyperbolic, then the perturbed quantities evolve according to two decoupled Burgers equation [Valkó'2006, AIHP];

- For 1-d systems with two conservation laws,
 - if the equilibrium point is hyperbolic, then the perturbed quantities evolve according to two decoupled Burgers equation [Valkó'2006, AIHP];
 - if the equilibrium point is NOT hyperbolic, then the small perturbations are driven by a two-by-two system [Tóth-Valkó'2005, CMP].

- For 1-d systems with two conservation laws,
 - if the equilibrium point is hyperbolic, then the perturbed quantities evolve according to two decoupled Burgers equation [Valkó'2006, AIHP];
 - if the equilibrium point is NOT hyperbolic, then the small perturbations are driven by a two-by-two system [Tóth-Valkó'2005, CMP].
- It is always non-resonant for 1-d systems with two conservation laws, which is not the case for systems with three or more conservation laws.

- For 1-d systems with two conservation laws,
 - if the equilibrium point is hyperbolic, then the perturbed quantities evolve according to two decoupled Burgers equation [Valkó'2006, AIHP];
 - if the equilibrium point is NOT hyperbolic, then the small perturbations are driven by a two-by-two system [Tóth-Valkó'2005, CMP].
- It is always non-resonant for 1-d systems with two conservation laws, which is not the case for systems with three or more conservation laws.
- EP with collisions: *d* ≥ 3 [Esposito-Marra-Yau'1996, CMP], weakly asymmetric [Meurs-Tsunoda-Xu'2024, arXiv:2402.10375].

ヘロン 人間 とくほ とくほ とう

Thanks!

Email: linjie_zhao@hust.edu.cn

Linjie Zhao (HUST)

Two conservation laws

27 / 27