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@ One conservation law

© Generalized exclusion process

© Two conservation laws
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The exclusion process
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Figure: ASEP: p=1— ¢ € (1/2,1].
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Figure: ASEP: p=1— ¢ € (1/2,1].

The configuration space is € := {0,1}2". For any n € Q and z € Z¢,
Nz € {0,1} is the number of particles at site x.
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The exclusion process
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Figure: ASEP: p=1— g€ (1/2,1].

The configuration space is € := {0,1}2". For any n € Q and z € Z¢,
Nz € {0,1} is the number of particles at site x.
Generator of the process 7)(t): for local functions fon €,

L) = > ply— 2)na(1 — ny)[fn™Y) — fim)],

z,yeZl

where 7Y = n, for 2=y, =n, for 2=z, and = 1), otherwise.
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Hydrodynamic limits

Assume m := ) ;. ap(x) # 0. Define the empirical measure of the process

N (du) = % > 1(tN)d gy w(du).

z€Z4
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Hydrodynamic limits

Assume m := ) ;. ap(x) # 0. Define the empirical measure of the process

N (du) = % > 1(tN)d gy w(du).

z€Z4

Under mild conditions,
lim 7N(du) = p(t,u)du in probability,
N—oo
where the hydrodynamic equation is
Op(t,w) +m-Vf(p(t,u)) =0

with initial condition pi,i. Above, f(p) = p(1 — p).
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Hydrodynamic limits

Assume m := ) ;. ap(x) # 0. Define the empirical measure of the process

N (du) = % > 1(tN)d gy w(du).

z€Z?
Under mild conditions,
A}i_r)noo 7V (du) = p(t,w)du in probability,
where the hydrodynamic equation is
Oup(t, u) +m - Vf(p(t,u)) =0

with initial condition pi,;. Above, f(p) = p(1 — p).
@ Relative entropy method only in the smooth regime [Yau'1991];
@ Attractiveness method [Rezakhanlou'1991].

1(0) < ¢(0) = n(t) < ¢(¥).
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Navier-Stokes corrections
One expects an order of N~! correction to the hydrodynamic equation

[Page 185, Kipnis-Landim'1998]:

atPN +m- vf(pN) = N Z auL [Di,j(pN)auij] .

Linjie Zhao (HUST) One conservation law 5/27



Navier-Stokes corrections

One expects an order of N~! correction to the hydrodynamic equation
[Page 185, Kipnis-Landim'1998]:

atPN +m- vf(pN) = N Z auL [Di,j(pN>auij] .

@ First order correction. Define

g (t, u) := Enpun (tN)].
Then, under suitable initial conditions,

lim N[¢V —pN] =0

N—oo

in a weak sense.
Asymmetric EP in d > 3 [Landim-Olla-Yau'1997, CPAM],
EP with speed change in d > 3 [Janvresse'1998, AoP].
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@ Long time behavior. If
Op(t,w) + m-Vf(p(t,u) =0,

then the entropy solution converges to a stationary solution which is
constant along the drift:

tlgglo p(t,u) = /pini(u—i— mr)dr.

Linjie Zhao (HUST) One conservation law 6 /27



@ Long time behavior. If
Op(t,w) + m-Vf(p(t,u) =0,

then the entropy solution converges to a stationary solution which is
constant along the drift:

tlggo p(t,u) = /pini(u—i— mr)dr.
Thus, under diffusive scaling, one expects that
. 2\
m-V lim B,y (1N7)] = 0,
and that on the hyperplane orthogonal to the drift, the profile obeys a

parabolic equation.
Asymmetric ZRP in d > 2 [Benois-Koukkous-Landim'1997, JSP],

Asymmetric EP in d > 3 [Landim-Sued-Valle'’2004, CMP].
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@ Long time behavior. If
Op(t,w) + m-Vf(p(t,u) =0,

then the entropy solution converges to a stationary solution which is
constant along the drift:

tlggo p(t,u) = /pini(u—i— mr)dr.
Thus, under diffusive scaling, one expects that
. 2\
m-V lim B,y (1N7)] = 0,

and that on the hyperplane orthogonal to the drift, the profile obeys a

parabolic equation.
Asymmetric ZRP in d > 2 [Benois-Koukkous-Landim'1997, JSP],

Asymmetric EP in d > 3 [Landim-Sued-Valle'’2004, CMP].

@ The incompressible limit...
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Equilibrium perturbation for the PDE

For d > 3, one expects an order of N~! correction to the hydrodynamic
equation: (the fluctuation has order N~4/2)

d
1
0ip™ +m-Vf(p “ N Z )0, M)
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Equilibrium perturbation for the PDE

For d > 3, one expects an order of N~! correction to the hydrodynamic
equation: (the fluctuation has order N~4/2)

d
1
0ip™ +m-Vf(p “ N Z )0, M)

For p. € [0, 1], consider
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Equilibrium perturbation for the PDE

For d > 3, one expects an order of N~! correction to the hydrodynamic
equation: (the fluctuation has order N~4/2)

d
1
0ip™ +m-Vf(p “ N Z )0, M)

For p. € [0, 1], consider

Then,
0" (1) = L), Dug(on(t ) = Duglps) + ON),
FN (1) = £lo2) + TV (ot + TN e 4 o),
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Inserting the above Taylor expansions to the corrected hydrodynamic
equation,

e + NVf (p.)m - Val¥ + %N"*“f”(p*)m- V[(a™)?]

d
=N Dij(pa)or, 0 + O(NTOTH 4 N2,

4,5=1
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Inserting the above Taylor expansions to the corrected hydrodynamic
equation,

21N+ N (p.)m- V' + SN (o, m - V(o)

d
=N Dij(p.)ds, 0 + O(N =71 4 N2,

ij=1
The blue term can be removed by a Galilean transformation
a(t,u) = bV (t, u— mtNYf (p.)).
Finally,
OV + SN (g ym - V(0]
d

= NTE Y Dijpa)d5,, 0N + OO 4 N,

i,j=1
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O+ SN (pm- V(B

d
=N Dij(p)og b + O Tt 4 N2
ij=1
Define b(t, u) = limy_ o b™(t, u).

=] F = £ 9©Aac
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O + SN () V(DY)

d
= N7UY Dij(p)0% 0N+ O T N2,

7,5=1

Define b(t, u) = limy_ o b™(t, u).
o lfy=a=1,

d
1
dib+ §f//(P*)m V=" Dij(pa)02, b

3,5=1
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1
O+ LN (pym- (B
d
= N1 Y Dapu)di,0, b + OO 4 MY,
7,j=1

Define b(t, u) = limy_ o b™(t, u).
o lfy=a=1,

d
1
dib+ if"(/)*)m V=" Dij(pa)02, b

3,5=1

o lfy=a<1,
1
b+ §f"(p*)m'VbQ =0;
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QY + SN (p)m - V()7

d
NS D08 O ),
7,5=1
Define b(t, u) = limp_,o0 bV (% ).
o |f Y=o = 1v

d
1
Oeb + 5fu(p>.<)m.vb2 =" Dij(p)d2 b
3,j=1
(] If"}/ =a < 1'
1
atb+ if”(p*)m' vb2 = 0;

olfy=1<a,
d

0= Dij(p:)5, .

i,j=1
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Phase transition in d > 3
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Equilibrium perturbation for the IPS
By hydrodynamic limits theory,

5 S N H(a/ ) /R Mt ) o) do

z€Z4
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Equilibrium perturbation for the IPS
By hydrodynamic limits theory,

% % na(tN) H(z/ N) ~ /R () H(w) o

For u € RY, take
H(v) = Hy(v) = (26)"U{|u— 1| < ¢},

then

o X ) = (k) = b (o mifp.))

|z—uN|<eN
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Equilibrium perturbation for the IPS
By hydrodynamic limits theory,

5 S N H(a/ ) /R Mt ) o) do

z€Z4

For u € RY, take

H(v) = Hy(0) = (2¢) "1 Ju— | < e},

then
—1 N LN t /
(2eN)d Z n:(tN) ~ p (tu):m—l—ﬁb (m,u—mtf (p*))
|z—uN|<eN
Thus,
NO(
W(t W) ~ g > (n(ENH7) = ).

|o—(u+mtN7f' (p.)) N|<eN
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NO(
b (t, u) ~ (@eN)? > (na(EN"F7) = puo).
|2 (utmtNTf (p.)) N|<eN
Therefore, under mild conditions, we expect that for any test function H,

lim
N—oo Nd—a

> (n(tNY) = p) H(% — mtNf (p.)

TeZ4

:/ b(t, u)H(u)du in probability.
Rd
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Related literature

o Asymmetric EP in d > 3 [Esposito-Marra-Yau'1994, Rev. Math.
Phys]: vy=a=1,

lim % > (na(tN?) = p.) H(% — mtNf'(p.))

N—oo
z€Z?
:/ b(t, w)H(u)du in probability,
Rd

where
Oeb + f”(p* ym- Vb = ZDw P)0z, 05D
i,j=1

Above, D; ; is given by a variational formula.
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Related literature

o Asymmetric EP in d > 3 [Esposito-Marra-Yau'1994, Rev. Math.
Phys]: vy=a=1,

lim % > (na(tN?) = p.) H(% — mtNf'(p.))

N—oo
z€Z?
:/ b(t, w)H(u)du in probability,
Rd

where
Oub+ 51" (p.)m- VI = Z Dij(p:)0%,0,b
,j=1
Above, D; ; is given by a variational formula.

The correct time scaling for d = 1 should be N3/2, while for d = 2 there is
a logarithmic correction to N2.
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@ Hammersley's model in d =1 [Seppiliinen'2001, AoP]: for

v =« < 1/2, the limit is inviscid Burgers equation. Coupling
techniques.
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e Hammersley's model in d = 1 [Seppalainen'2001, AoP]: for
v =« < 1/2, the limit is inviscid Burgers equation. Coupling
techniques.

@ Deposition models in d =1 [Téth-Valkd'2002, JSP]: v = o < 1/5.
Relative entropy method, only in the smooth regime.
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o {pevtwrbapion)
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@ Hammersley's model in d =1 [Seppiliinen'2001, AoP]: for
v =« < 1/2, the limit is inviscid Burgers equation. Coupling
techniques.

@ Deposition models in d =1 [Téth-Valkd'2002, JSP]: v = o < 1/5.
Relative entropy method, only in the smooth regime.

@ Weakly asymmetric EP in d > 1 [Jara-Landim-Tsunoda'2021, AIHP]:
for v = 1 and under some constraints on «, the limit is viscous Burgers
equation. Improved relative entropy method by Jara and Menezes.
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Generalized exclusion process
The state space is = {0, 1,..., K}va. Forne, n,€{0,1,...,K}is

the number of particles at site z. For 1 < ¢ < d, a particle jumps from site z
to site x & e; at rate

Pilz(K = Nate,) and  qing(K —np—e,)-
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Generalized exclusion process
The state space is = {0, 1,..., K}va. Forne, n,€{0,1,...,K}is

the number of particles at site z. For 1 < ¢ < d, a particle jumps from site z
to site x £ e; at rate

Pilz(K = Nate,) and  qing(K —np—e,)-

We assume p; — g; # 0 for some 1 < ¢ < d, and denote

m= (m;)i<i<d = (Pi — ¢i)1<i<d-
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Generalized exclusion process
The state space is = {0, 1,..., K}va. Forne, n,€{0,1,...,K}is

the number of particles at site z. For 1 < ¢ < d, a particle jumps from site z
to site x & e; at rate

Pilz(K = Nate,) and  qing(K —np—e,)-

We assume p; — g; # 0 for some 1 < ¢ < d, and denote

m= (m;)i<i<d = (Pi — ¢i)1<i<d-

The process has a family of product invariant measures V,ﬂv on 2 indexed by
particle density p € [0, K],

== () () (-5 r=on.x
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For any profile p : T¢ — [0, K], define yﬁ,) as the product measure on 2
with marginals
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For any profile p : T¢ — [0, K], define l/é\é_) as the product measure on 2

with marginals
Ve =k) =v M=k, ze€Th k=1, K
Define the reference profile
pN(tu) = pe + NTD(N ™ u— mtN'f (p.)),
where, f(p) = p(K — p), and
b= m- V.

Let 1Y = v\, | be the reference measure.
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For any profile p : T¢ — [0, K], define uﬁ_) as the product measure on 2

with marginals
Ve =k) =v M=k, ze€Th k=1, K
Define the reference profile
pN(tu) = pe + NTD(N ™ u— mtN'f (p.)),
where, f(p) = p(K — p), and
Ot =m- Vb

Let 1Y = v\, | be the reference measure.
Recall the relative entropy is defined as

H(ulv) =/flogfdv, f= %.
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Main results [Xu-Z.2023, EJP]

Let u¥ be the distribution of the process at time tN'*7. If
H(pg |vy) = o(N"=2%),

then under some constraints on « and «, for any ¢ > 0 such that b(, u) is
smooth,
H(pg'|vy") = o(N"72%).
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Main results [Xu-Z.2023, EJP]

Let u¥ be the distribution of the process at time tN'*7. If
H(pg |vy) = o(N"=2%),

then under some constraints on « and «, for any ¢ > 0 such that b(, u) is
smooth,
H(p'|vy") = o(N*72).

As a corollary, for any ¢ > 0 and test function H,

lim
N—oo Nd—a

Z (nz(tNl-i_’y) - P*)H(% - mfl(p*)tm)

d
zeTy

:/ b(t, u)H(u)du in probability.
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d>2

o ( pertwrbation)
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1-d chain of anharmonic oscillators

DPa—1 Pz DPa+1
Qz—1 qz Qa+1
S —
Tz

Above, p, = momentum of the particle x; ¢, = position of the particle z;
Ts = Gz — ¢s—1 the inter-particle distance. Assume V € C?(R) with bounded
second derivative. We consider the periodic case z € Ty.

dpo(t) = [V (1a41(1) = V' (r2(D)] dt,
drz(t) = [pz(t> - pz—l(t)] dt
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1-d chain of anharmonic oscillators

Pz—1 Pz Pa+1
qz—1 qz Ga+1
>
Ty

Above, p, = momentum of the particle x; ¢, = position of the particle z;
Tz = @s — o1 the inter-particle distance. Assume V € C%(R) with bounded
second derivative. We consider the periodic case z € Ty.

dpa(t) = [V (ras1 (1) — V' (r2(1))] dt,
dro(t) = [pa(t) — po—1(t)] dt

Momentum >~ p,, volume Y 7, and energy >_[V(r,) + p2/2] are conserved.
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1-d chain of anharmonic oscillators

Pa—1 Pz Pa+1

qz—1 qz Ga+1
R NCI11 1  1
>
Ty

Above, p, = momentum of the particle x; g, = position of the particle z;
Tw = Gz — ¢s—1 the inter-particle distance. Assume V € C?(R) with bounded
second derivative. We consider the periodic case z € Ty.

dpm(t) = [VI(Terl(t)) - V/(rz(t))] dt,
dra(t) = [pa(t) — po—1(t)] dt
+@ [V (roar(8) + V' (ram1 () — 2V (r(1))] dt

+V/En[dBy — dBY).
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1-d chain of anharmonic oscillators

Pz—1 Pazt+1
qz—1 Qa+1

%mf@m\

Above, p, = momentum of the particle x; ¢, = position of the particle z;
Tz = Gz — ¢s—1 the inter-particle distance. Assume V € C?(R) with bounded
second derivative. We consider the periodic case z € Ty.

dpy(t) = [V (141 () — V' (ru(1)] dt,
dra:<t) = [pz(t) - pz—l(t)] dt

FE (Vs () + V(21 () = 2V ()]

+VEn[dBi — dBj].
Only momentum 3 p, and volume " r, are conserved.
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The hydrodynamic equation is given by the following p-system
5‘tp = 5u7'(t), 6tt = 5‘up

Above, p = p(t, u),t =t(t,u) for w € T, and 7 = 7(t) is the equilibrium
tension.
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The hydrodynamic equation is given by the following p-system
8tp = 6u7'(t), 6tt = 5‘up
Above, p = p(t, u),t =t(t,u) for w € T, and 7 = 7(t) is the equilibrium

tension.
Fix p. and t, such that 7/(x,) # 0 (strict hyperbolicity).
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The hydrodynamic equation is given by the following p-system

875]3 = 6u7'(t), 6tt = 8up
Above, p = p(t, u),t =t(t,u) for w € T, and 7 = 7(t) is the equilibrium
tension.

Fix p. and t, such that 7/(x,) # 0 (strict hyperbolicity).
The current of the system is

Jp,v) = (=7(x), =p).

L (O 0T e 0 —7'(x.)
A\ 0T ) lpaey  \ -1 0

The matrix A has two eigenvalues ++/7/(t,) with corresponding right

eigenvalues
vy = (— 7;'(&)) v ( Tl’(t*)>
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Main results [Xu-Z.2023, EJP]

Assume initially, for any test function H,
1 pw(o) — P x
li H(—)
Noyoo NI—a <rx(0) —v. ) \N
z€Ty

= ZVJ/ ni u)du in probability,

where o' are the initial profiles satisfying

/affidu:/ai_niduzo
T T
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Assume the initial relative entropy has order o( N*=2%), and under some
constraints on v and «, if N57t4e~1 « gk <« N7, then for any test
function H,
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Assume the initial relative entropy has order o( N*=2%), and under some
constraints on v and «, if N57t4e~1 « gk <« N7, then for any test
function H,

14+
lim —— Nl Z ( w + (r(ENTHY) — t*))

N—oco acTy (t*)

H<N+th) = /TU,(t, u)H(u)du in probability,

1+v)
lim qufa Z (p””(tN )b +(7”z(tN1+7)—t*)>

N=o0 €Ty T ,(t*)

X H(— — Nt/ 7' (xs ) /a+ (t,u)H(u)du in probability.
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Assume the initial relative entropy has order o( N*=2%), and under some
constraints on v and «, if N57t4e~1 « gk <« N7, then for any test
function H,

lim —— Nl Z ( w + (r(ENTHY) — t*))

N—oo acTu (t*)

H<N+th> = /TU,(L‘, u)H(u)du in probability,

1+v)
lim qufa Z (p””(tN )b +(7”z(tN1+7)—t*))

N=o0 €Ty T ,<t*)

X H(— — Nt/ 7' (xs ) /o+ (t,u)H(u)du in probability.

We observe the evolution of perturbed conserved quantities along the
characteristic lines.
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Related literature

@ For 1-d systems with two conservation laws,

> if the equilibrium point is hyperbolic, then the perturbed quantities
evolve according to two decoupled Burgers equation [Valké'2006,
AIHPY];

Linjie Zhao (HUST) Two conservation laws 26 /27



Related literature

@ For 1-d systems with two conservation laws,
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AIHPY];
> if the equilibrium point is NOT hyperbolic, then the small perturbations
are driven by a two-by-two system [Té6th-Valké'2005, CMP].
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Related literature

@ For 1-d systems with two conservation laws,
> if the equilibrium point is hyperbolic, then the perturbed quantities
evolve according to two decoupled Burgers equation [Valké'2006,
AIHPY];
> if the equilibrium point is NOT hyperbolic, then the small perturbations
are driven by a two-by-two system [Téth-Valké'2005, CMP].
@ It is always non-resonant for 1-d systems with two conservation laws,
which is not the case for systems with three or more conservation laws.
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Related literature

@ For 1-d systems with two conservation laws,
> if the equilibrium point is hyperbolic, then the perturbed quantities
evolve according to two decoupled Burgers equation [Valké'2006,
AIHP];
> if the equilibrium point is NOT hyperbolic, then the small perturbations
are driven by a two-by-two system [Téth-Valk6'2005, CMP].
@ It is always non-resonant for 1-d systems with two conservation laws,
which is not the case for systems with three or more conservation laws.

e EP with collisions: d > 3 [Esposito-Marra-Yau'1996, CMP], weakly
asymmetric [Meurs-Tsunoda-Xu'2024, arXiv:2402.10375].
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Thanks!

Email: linjie_zhao®hust.edu.cn
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